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This blog post, part of a series on the DGX-A100 OpenShift launch, presents the functional and
performance assessment we performed to validate the behavior of the DGX™ AIOO0 system,
including its eight NVIDIA A100 GPUs. This study was performed on OpenShift 4.9 with the GPU
computing stack deployed by NVIDIA GPU Operator v1.9. It is a follow-up to our previous work
on enabling MIG support in the GPU Operator and benchmarking Al/ML performance on a single
A100 GPU.

In this work, we paid particular attention to the reproducibility of the functional and performance
tests, so that the whole testing procedure can be easily re-executed in any freshly deployed
OpenShift cluster.

For the workload running on the GPUs, we chose the NVIDIA PyTorch implementation of the
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Single Shot Detector (SSD) Al/ML model, from MLCommons MLPerf vO.7 repository, running
against the COCO dataset.

In the following sections, we describe how we prepared the cluster, then go through the
functional testing of the MIG partitioning control of the GPU Operator. We also present the
performance benchmarking performed to validate the speed up gain when using multiple GPUs
to run the SSD algorithm and the performance isolation when running multiple independent
workloads on each of the GPUs.

Cluster Preparation

Install and Configure the Operators

To prepare the cluster for running the tests and benchmarks, a few operators must be deployed
and configured:

1. The OpenShift Node Feature Discovery Operator. This operator is in charge of labeling the
worker nodes with hardware and system properties. It is a prerequisite for the NVIDIA GPU
Operator, as it detects NVIDIA GPU PCI cards and advertises them on the node

label feature.node.kubernetes.io/pci-1@de.present=true.

2. The NVIDIA GPU Operator. This operator is the cornerstone of this work. It deploys the GPU
computing stack, including the kernel driver, in all of the GPU nodes. Since v1.9.0, the
deployment of RHEL entitlement is not necessary anymore. With the help of NFD labels, the
GPU Operator will automatically detect the DGX A100 node and install (via containers) the
necessary drivers, services, and CUDA libraries to run GPU workloads.

3. The OpenShift Local Storage Operator. This operator allows storing persistent data on local
disks or partitions. See our own LocalVolume resource as an example, but make sure to adapt
it to the hardware setup of your system. The only requirement is to expose
a StorageClass (named local-sc-dgx inour illustrations) that can be used later to create
a PersistentVolumeClaim , with at least 30 GB of available disk space.

Prepare the Dataset and the Container Image

Once the operators have been installed and configured, we must prepare the cluster to run the
benchmark:

1. Prepare a PersistentVolumeClaim for storing the dataset
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PVC_NAME=benchmarking-coco-dataset
NAMESPACE=default
STORAGE _CLASS_NAME=1local-sc-dgx

cat <<EOF | oc apply -f-
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: $PVC_NAME
namespace: $NAMESPACE
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 80Gi

storageClassName: $STORAGE_CLASS_NAME

EOF

https://www.redhat.com/en/blog/a-guide-to-functional-and-p...

2. Download the COCO dataset and extract it in the persistent storage

1. Create the entrypoint script ConfigMap . See our entrypoint ConfigMap .

2. Create the Pod itself, and wait for its completion. See our download Pod .

3. Create an ImageStream for creating the MLPerf SSD container image, and create
a BuildConfig to turn the repository into a container image:

NAMESPACE=default
cat <<EOF | oc apply -f-
kind: ImageStream
apiVersion: 1image.openshift.io/v1l
metadata:
name: mlperf
namespace: $NAMESPACE
labels:
app: mlperf
spec: 1%
EOF

NAMESPACE=default

cat <<EOF | oc apply -f-
apiVersion: build.openshift.io/vl
kind: BuildConfig

metadata:
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labels:
app: mlperf
name: mlperf@.7
namespace: $NAMESPACE
spec:
output:
to:
kind: ImageStreamTag
name: mlperf:ssd_0.7
namespace: default
resources: {1t
source:
type: Git
git:
uri: "https://github.com/openshift-psap/training_results_v@.7.git"
ref: "fix/build-error-ssd”
contextDir: NVIDIA/benchmarks/ssd/implementations/pytorch
triggers:
- type: "ConfigChange"
strategy:
type: Docker
dockerStrategy: §?
EOF

At the end of the Build execution, the ImageStream will contain a containerimage that can be
used by the Pods in the same namespace:

image-registry.openshift-image-registry.svc:5000/default/mlperf:ssd_0.7

Note that this BuildConfig points to our fork on the training_results_v@.7 repository
because of a bug in the image build chain, leading to a failure in the image build. Our fork simply
reorganizes the content of the Dockerfile to avoid hitting the problem, and the rest of the
repository is untouched.

Customization of the GPU Operator

The GPU Operator ships a default list of possible MIG configurations, where all the GPUs of a
given node all have the same configuration. This list can be overridden by a custom configuration
file, allowing a finer-grain configuration of each of the GPUs. As part of our functional testing, we
apply a custom configuration file, extending the default list with this entry (from the NVIDIA
MIG-Parted repository):

version: vl
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mig-configs:

custom-config:
- devices: [0,1,2,3]
mig-enabled: false
- devices: [4]
mig-enabled: true
mig-devices:
"1g.5gb": 7
- devices: [5]
mig-enabled: true
mig-devices:
"2g.10gb": 3
- devices: [6]
mig-enabled: true
mig-devices:
"3g.20gb": 2
- devices: [7]
mig-enabled: true
mig-devices:

"1lg.5gb": 2
"2g.10gb": 1
"3g.20gb": 1

oc apply -f https://github.com/NVIDIA/mig-parted/blob/a27f0bb0lfleffdd866a29d28
963340540bf85c3/examples/config.yaml

oc patch clusterpolicy/gpu-cluster-policy --type='json' -p='[{"op": "replace”,
"path": "/spec/migManager/config", "value": {"name": "custom-mig-config"t1]’

Once all these steps have been carried out, the cluster is ready for executing our benchmark
suite. In the following section, we present the reproducible benchmarking environment we used
for running the GPU computing validation benchmarks on the DGX A100 system.

Reproducible Benchmarking Environment

Running the validation benchmarks can be done manually by instantiating the Kubernetes
resources and waiting for the completion of the workload jobs. However, this would not scale well,
when the number of benchmarks to run gets larger.

To solve this problem, we used the MatrixBenchmarking framework, which allows specifying a
list of workload configurations that should be benchmarked. See this configuration file for the
settings used, and this directory for the code used for running and plotting the benchmark.
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MatrixBenchmarking: Run and Plot Benchmarks
Configurations

MatrixBenchmarking is a framework for running various combinations of benchmarking
parameters, storing execution artifacts, and plotting the results. The tool is agnostic to the
workload being benchmarked; the configuration file ( benchmark.yaml ) defines the
configurations that should be tested, as well as how to execute it and where to store the results.

The following components are required to run the benchmark, parse the results, and visualize

them:

1. A benchmark execution script, independent from the rest of the framework (further described

in the following subsection).

2. A Python storage module, which parses the content of the artifact directories and stores the

raw measurements into Python structures.

3. A Python visualization module, which transforms the measurements into Plotly graphs.
The MatrixBenchmarking framework combines these modules and provides two commands:

1. benchmark to run all the benchmark configurations that did not terminate successfully yet

2. visualize to parse the benchmark artifacts and provide a dynamic Web interface to

visualize the data results

In the following subsections, we more thoroughly present the script in charge of running the
MLPerf SSD benchmark. We also detail the observation artifacts we collect, which allow studying
post-mortem the exact setup in which the benchmark ran, as well as the reproduction artifacts,
which allow anyone to re-run a particular benchmark without hassle.

Execution of the SSD benchmark on
OpenShift: run_ssd.py

run_ssd.py is our scriptin charge of launching the MLPerf benchmark on OpenShift. It
configures the GPUs and the GPU Kubernetes stack according to the benchmark requirements
(GPU MIG configuration, MIG advertisement), then prepares and instantiates the Kubernetes
workload Jobs and waits for the termination of its Pods. The script enforces the proper
coordination of the different steps (e.g., cleanup of any dangling Pod, awaiting for
reconfiguration of the GPUs, validation of the Pod successful execution). It reports an error if
anything goes wrong, so that the MatrixBenchmarking framework knows that this run was
unsuccessful and should be re-executed later.
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In addition to the execution coordination, the script captures observation and reproduction
artifacts. We describe these artifacts in the following subsections.

Observation Artifacts

Observation artifacts are critical for post-mortem studies of the runtime environment in which
the benchmark was executed. They can be used to confirm some aspects of the configuration or
troubleshoot any performance perk and so on. In the following, we list artifacts we currently
gather for each of the benchmark execution:

¢ Cluster information: OpenShift ClusterVersion/version resource definition

Node information: the Node resource definition

GPU stack information: the ClusterPolicy resource definition

Workload information:

o The Jobs resource definitions

o The Pods logs

o The Pods image (name and SHA)

GPU usage information:
o The Prometheus start/stop timestamp

o The GPU metrics generated between these timestamps

Benchmark execution information:

o The exit code of run_ssd.py execution

= This tells if the execution was successful

o The benchmark settings being tested

= This tells what configuration was being tested

o The logs of run_ssd.py execution

= This contains the performance indicators generated by the application

The second part of the artifacts generated by the benchmark relates to the reproduction
artifacts.

Reproduction Steps
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Reproduction artifacts provide an easy way to re-execute a particular configuration of the
benchmark by providing all the relevant configuration bits. See run_from_artifacts.sh fora
minimal sample script re-executing a given benchmark. The artifacts stored for re-execution are
the following:

e Kubernetes environment:

o app_name : name of the Job app label, used for tracking the Pods running the workload

© namespace : hamespace where the resources are created

e GPU configuration:
o mig-strategy.txt : the MIG advertisement strategy to configure in the ClusterPolicy
o mig-label.txt : the MIG label to apply to the DGX Al 100
o entrypoint.cm.yaml : the entrypoint script controlling the workload execution in the Pods

o job_spec.run-ssd.yaml : the Job defining the benchmark workload

Along with the cluster setup presented in the previous section, these artifacts should be enough
to reproduce the benchmark execution.

In the following subsection, we describe the functional testing we performed on the DGX A100
to validate the good behavior of the NVIDIA GPU Operator with the eight MIG-capable GPUs.

Testing of the MIG Capabilities

DGX A100 offers eight integrated MIG-capable NVIDIA A100 Tensor Core GPUs with 320 GB
and 640 GB GPU memory options. In this section, we present different tests we ran to validate
that the GPU Operator is able to properly configure MIG functionality on the 320 GB
configuration (40 GB per GPU). The original work on dynamic MIG reconfiguration was
presented in this blog post, and it is also documented on the GPU Operator web page.

single Advertisement Strategy

With the single advertisement strategy, the GPU Operator exposes the MIG GPUs with the same
tag as full GPUs: nvidia.com/gpus . This advertisement strateqy is useful for full compatibility
with full GPUs, as it does not require modifying the resource tag requested by the Pods. The
node labels indicate the MIG slicing through the nvidia.com/gpu.product label.

Example of configuration:
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Requesting one GPUs per Pod in 8 Pods

e Test artifacts
e Job parallelism: 8
¢ Container resources:
resources:
Timits:
nvidia.com/gpu: "1"

requests:
nvidia.com/gpu: "1"

e nvidia-smi -L (from one of the Pods)

GPU @: NVIDIA Al00-SXM4-4QGB (UUID: GPU-55b69871-247e-9b99-a60a-7daca59a4108)
MIG 7g.40gb Device ©: (UUID: MIG-62f7dc39-4870-51c0-9b21-86def482903a)

Requesting all the GPUs in one Pod

e Test artifacts

e Job parallelism: 1
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e Container resources:

resources:
limits:
nvidia.com/gpu: "8"
requests:
nvidia.com/gpu: "8"

e nvidia-smi -L

GPU @: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-4dd97325-7fe6-abfl-d6a9-ba746fe@fdab)
MIG 7g.40gb Device ©@: (UUID: MIG-70@8cac5-5da7-5b37-9ddd-3f44ece79169)
GPU 1: NVIDIA AlQ0-SXM4-40GB (UUID: GPU-9el3f17f-a213-eb38-9a9c-0b2a540e4908)
MIG 7g.40gb Device ©: (UUID: MIG-ac247lee-ea®5-55fe-b7d7-8c31210e7abe)
GPU 2: NVIDIA Al@@-SXM4-40GB (UUID: GPU-lae2la3c-f40b-77a7-002f-4b0b52b@5f5b)
MIG 7g.40gb Device ©@: (UUID: MIG-960c229f-92b5-5543-8eb5-2999f26ef6b8)
GPU 3: NVIDIA Al@@-SXM4-40GB (UUID: GPU-eeb@f073-2f03-6035-72a3-7blac76c5a72)
MIG 7g.40gb Device ©: (UUID: MIG-6@bbf248-9d3f-5386-9ff5-6af012397026)
GPU 4: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-c9297a60-5079-9a56-b935-51e08dc@f65¢e)
MIG 7g.40gb Device ©@: (UUID: MIG-eba8b28b-434d-510c-806c-10304eb92e21)
GPU 5: NVIDIA AlQ0-SXM4-40GB (UUID: GPU-4fbl7cd5-cad8-31a6-34d3-08434d926140)
MIG 7g.40gb Device ©@: (UUID: MIG-e4b043ba-742f-5607-806e-29b77f044f60)
GPU 6: NVIDIA Al@@-SXM4-40GB (UUID: GPU-55b69871-247e-9b99-a60a-7daca59a4108)
MIG 7g.40gb Device ©: (UUID: MIG-62f7dc39-4870-51c0-9b21-86def482903a)
GPU 7: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-fccb396c-echa-9822-6217-a790cd2c9d3f)
MIG 7g.40gb Device ©: (UUID: MIG-a@f08426-7343-531e-9087-0a203felab9of)

Requesting more GPUs than available, in two Pods

In this test case, we request five GPUs in two Pods, while only eight GPUs are available in the
system. Kubernetes Pod scheduler detects that there are not enough GPU resources available to
schedule the second Pod, so it delays it until the resources are released. Hence, the execution of
the two Pods is sequential.

e Test artifacts
e Job parallelism: 2
e Container resources:
resources.:
Timits:

nvidia.com/gpu: "5"
requests:
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nvidia.com/gpu: "5"

e nvidia-smi -L (from one of the Pods)

GPU @: NVIDIA Al100-SXM4-40GB

MIG 7g.40gb Device 0:
GPU 1: NVIDIA AlQQ-SXM4-40GB
MIG 7g.40gb Device 0:
GPU 2: NVIDIA Al100-SXM4-40GB
MIG 7g.40gb Device 0:
GPU 3: NVIDIA AlQ0-SXM4-40GB
MIG 7g.40gb Device 0:
GPU 4: NVIDIA AlQ0-SXM4-40GB
MIG 7g.40gb Device 0:

(UUID:
(UUID:
(UUID:
(UUID:
(UUID:
(UUID:
(UUID:
(UUID:
(UUID:
(UUID:

GPU-4dd97325-7fe6-abfl-d6a9-ba746fe@fdab)
MIG-7008cac5-5da7-5b37-9ddd-3f44ece79169)
GPU-9e13f17f-a213-eb38-9a9c-0b2a540e4908)
MIG-ac247lee-ea®5-55fe-b7d7-8c31210e7a6e)
GPU-lae2la3c-f40b-77a7-002f-4b0b52b@5f5b)
MIG-960c229f-92b5-5543-8eb5-2999f26ef6b8)
GPU-55b69871-247e-9b99-a60@a-7daca59a4108)
MIG-62f7dc39-4870-51c0-9b21-86def482903a)
GPU-fccb396c-ecba-9822-6217-a790cd2c9d3f)
MIG-a0f08426-7343-531e-9087-0a203felabof)

The sequential execution of the two Pods is visible in this plot of
the DCGM_FI_PROF_GR_ENGINE_ACTIVE metrics exported by the NVIDIA DCGM exporter:

Prometheus: DCGM_FI_PROF_GR_ENGINE_ACTIVE (overview)
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mixed Advertisement Strategy

The mixed advertisement strategy exposes MIG GPUs with a custom resource tag, indicating
the number of compute units and memory available for the instance (e.g.,: nvidia.com/
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mig-7g-40gb) for the biggest slice of the A100-40GB GPU. This advertisement strategy breaks
the compatibility with full GPUs but allows heterogeneous MIG slicing.

Example of configuration:

Requesting 1 wic-29.1096 GPUs in 24 Pods

Test artifacts

MIG configuration: nvidia.com/mig.config=all-2g.10gb

Job parallelism: 24

Container resources:

resources:
limits:
nvidia.com/mig-2g.10gb: "1"
requests:
nvidia.com/mig-2g.1@gb: "1"
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e nvidia-smi -L (from one of the Pods)

GPU @: NVIDIA Al00-SXM4-4QGB (UUID: GPU-55b69871-247e-9b99-a60a-7daca59a4108)
MIG 2g.10gb Device ©: (UUID: MIG-8c8a56c¢5-2703-5237-bcc3-a51a5d897ea8)

Requesting 24 wic-24.1090 GPUs in1Pod

e Test artifacts
e MIG configuration: nvidia.com/mig.config=all-2g.10@gb
e Job parallelism: 1
e Container resources:
resources:
limits:
nvidia.com/mig-2g.10@gb: "24"

requests:
nvidia.com/mig-2g.1@gb: "24"

e nvidia-smi -L

GPU @: NVIDIA AlQ0-SXM4-40GB (UUID: GPU-4dd97325-7fe6-abfl-d6a9-ba746fe@fdab)

MIG 2g.10gb Device ©@: (UUID: MIG-89d05d6f-212a-5e57-8253-601252e63667)
MIG 2g.1@gb Device 1: (UUID: MIG-56d4c7d7-797c-5ce8-a579-bctfbl9a4dlfl)
MIG 2g.10gb Device 2: (UUID: MIG-f7fcc8ba-34b5-573e-b4f3-71f624997288)
GPU 1: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-9el3f17f-a213-eb38-9a9c-0b2a540e4908)
MIG 2g.10gb Device ©: (UUID: MIG-03038366-f352-51a7-83a4-3b3a43744912)
MIG 2g.10gb Device 1: (UUID: MIG-47302280-e35a-505b-880f-886d4b4260al)
MIG 2g.10gb Device 2: (UUID: MIG-3725f00f-ea29-50a3-bd07-e08f5b@1f3b8)

Requesting multiple MIG instance types in multiple Pods

This test case creates two Jobs requesting 4 Pods. One of the Job requests resources of
type nvidia.com/mig-3g.20gb and the second one requests resources of type nvidia.com/
mig-2g.10@gb .

e Test artifacts

e MIG configuration: nvidia.com/mig.config=all-balanced

e Job parallelism: 4
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e Container resources:

resources:
limits:
nvidia.com/mig-3g.20gb: "1"
requests:
nvidia.com/mig-3g.20gb: "1"

e nvidia-smi -L (from one of the Pods)

GPU @: NVIDIA AlQ0-SXM4-40GB (UUID: GPU-9el3f1l7f-a213-eb38-9a9c-0b2a540e4908)
MIG 3g.20gb Device @: (UUID: MIG-7af93043-695c-54c5-90f5-b698832ab413)

e Job parallelism: 4
e Container resources:
resources.:
Timits:
nvidia.com/mig-2g.1@gb: "1"

requests:
nvidia.com/mig-2g.10gb: "1"

e nvidia-smi -L (from one of the Pods)

GPU @: NVIDIA Al1Q0-SXM4-40GB (UUID: GPU-9el3f17f-a213-eb38-9a9c-0b2a540e4908)
MIG 2g.10gb Device @: (UUID: MIG-92240150-b9ae-56f3-af21-184911981ed8)

Requesting multiple MIG instance types in 1 Pod: not supported
For illustration purpose only; this configuration is not supported by the NVIDIA GPU Operator:

e MIG configuration: nvidia.com/mig.config=all-balanced
e Job parallelism: 1

e Container resources:

resources: # this configuration is not supported
limits:
nvidia.com/mig-3g.20gb: "8"
nvidia.com/mig-2g.10@gb: "8"
requests:
nvidia.com/mig-3g.20gb: "8"

14 of 24 10/20/25, 1:33 PM



A Guide to Functional and Performance Testing of the NVID...

15 of 24

nvidia.com/mig-2g.10gb:
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Defining a Custom Multi-GPU MIG Configuration

The GPU Operator provides a predefined list of possible MIG configurations for the different

MIG-capable GPUs already released. These configurations also work in a multi-GPU node, such
as DGX A100, however, the same MIG slicing will be applied to all the GPUs of the node. It is
possible to override this default configuration by providing a custom ConfigMap containing the

desired configuration. See the GPU Operator documentation to find out how to deploy such a

configuration.

As part of our test bench, we applied the MIG-Parted sample multi-GPU

configuration named custom-config:

custom-config:

- devices: [0,1,2,3]

mig-enabled: false
devices: [4]
mig-enabled: true
mig-devices:
"1lg.5gb": 7
devices: [5]
mig-enabled: true
mig-devices:
"2g.10gb": 3
devices: [6]
mig-enabled: true
mig-devices:
"3g.20gb": 2
devices: [7]
mig-enabled: true
mig-devices:

"1lg.5gb": 2
"2g.10gb": 1
"3g.20gb": 1

And to validate the proper slicing of all the GPUs, we launched a Pod requesting O GPUs,

meaning we got access to all the GPUs of the node:

e Test artifacts

e MIG configuration: nvidia.com/mig.config=custom-config

e Job parallelism: 1
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e Container resources:

resources:
limits:
nvidia.com/gpus: "@"
requests:
nvidia.com/gpus: "Q@"

e nvidia-smi -L

GPU @: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-4dd97325-7fe6-abfl-d6a9-ba746fe@fdab)
GPU 1: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-9el13f17f-a213-eb38-9a9c-0b2a540e4908)
GPU 2: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-lae2la3c-f40b-77a7-002f-4b0b52b@5f5b)
GPU 3: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-eeb@f073-2f03-6035-72a3-7blac76c5a72)
GPU 4: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-c9297a60-5079-9a56-b935-51e@8dc@f65e)
MIG 1g.5gb Device ©: (UUID: MIG-1c5876e6-d3b9-524a-9eb4-664fctbd4de?)
MIG 1g.5gb Device 1: (UUID: MIG-934fe587-ac95-5d75-bf9e-f40befeb9b28)
MIG 1g.5gb Device 2: (UUID: MIG-4dcaea94-446a-522c-88el-e8fb193ca789)
MIG 1g.5gb Device 3: (UUID: MIG-dd39e743-ed46-5a4a-bf9b-2d33388a6b61)
MIG 1g.5gb Device 4: (UUID: MIG-144a6174-a7a4-5blf-85d2-4088e307aaa7)
MIG 1g.5gb Device 5: (UUID: MIG-f25c64a5-afbc-5311-bc@4-6ba3b4212a2a)
MIG 1g.5gb Device 6: (UUID: MIG-42b3ba88-8dc5-5e51-9c89-76885370b661)
GPU 5: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-4fbl7cd5-cad8-31a6-34d3-08434d926140)
MIG 2g.10gb Device ©: (UUID: MIG-bd4cla2b-57el-5df5-ac76-30cd1423b65e)
MIG 2g.10gb Device 1: (UUID: MIG-82b@c2d6-8829-56e4-9c64-f7balbaebc95)
MIG 2g.10gb Device 2: (UUID: MIG-7bd5246b-d60f-5700-9106-8457dd4cad3c)
GPU 6: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-55b69871-247e-9b99-a60a-7daca59a4108)
MIG 3g.20gb Device @: (UUID: MIG-2944fa25-4112-52cc-a727-1cf@9ba63e98)
MIG 3g.20gb Device 1: (UUID: MIG-4c7db5d8-f005-5927-803e-9ee984a56el5)
GPU 7: NVIDIA AlQQ-SXM4-4QGB (UUID: GPU-fccb396c-echa-9822-6217-a790cd2c9d3f)
MIG 3g.20gb Device @: (UUID: MIG-b9e81bd3-7504-588b-b3e7-d7607eabe8ba)
MIG 2g.10gb Device 1: (UUID: MIG-1765bea3-82da-57d7-b4d7-21c06f58c24a)
MIG 1g.5gb Device 2: (UUID: MIG-0b5ad859-df2d-5646-9b82-407a9ab33f44)
MIG 1g.5gb Device 3: (UUID: MIG-2bcdbd@l-44e6-5f68-ae6f-77448d2529f9)

This concludes the functional testing we performed on DGX A100 to validate the proper behavior

of MIG slicing and GPU requesting. In the following subsection, we present the results of the

performance benchmarking.

Benchmarking of the GPUs

The second part of the DGX A100 testing consisted of the validation of the GPU computing
performance, in particular when multiple GPUs are involved in the computation.

16 of 24

10/20/25, 1:33 PM



A Guide to Functional and Performance Testing of the NVID... https://www.redhat.com/en/blog/a-guide-to-functional-and-p...

Multi-GPU Performance Benchmarking

As a follow-up of our previous work on benchmarking a single A100, we continued with the
MLPerf 0.7 SSD training benchmark, from the PyTorch implementation submitted by NVIDIA.
The benchmark was running against the Coco 2017 benchmark.

We ran the benchmark with 1, 2, 3, ... or 8 GPUs working together on the benchmark, with GPU
peer-to-peer communication done with the NVIDIA NCCL library.

We obtained the following results, which show very good scaling performance: the results (red
line) are very close to the perfect scaling (blue dotted line).

Multi-GPU: Time to 0.23 threshold

1 GPU: reference time

80

"\ 2 GPUs: 1.95x faster

), lower is better

40

Time (in min

30 3 GPUs: 2.85x faster

4 GPUs: 3.70x faster

20 e

.............. T ——— 7 GPUs: 5.51x faster 8 GPUs: 5.51x faster
1 —e

Number of GPUs

GPU Parallel Execution Isolation Benchmarking

In the second part of the multi-GPU benchmarking, we wanted to understand how DGX A100
was able to run independent workloads on each of the GPUs. So we took the same benchmark
configuration as in the multi-GPU case, but we launched 1, 2, ... 8 Pods of the benchmark, all with
one dedicated GPU. We used a shared directory to synchronize the beginning of the execution
(i.e., wait for the right number of Pods to signal that they are ready).

In the plot below, we took the 1-GPU execution as a reference time (no parallelism) and
compared it against the time it took for all the Pods to complete the benchmark. We can see that
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with up to 5 or 6 GPUs running currently, there is barely no slowdown, but it starts to increase
with 7 or 8 GPUs. This is most likely due to the heavy data transfers between the disk, the main
memory, and the GPU memory, for this particular workload.

GPU Isolation: Time to 0.23 threshold
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Final Words

In this blog post, we presented how we performed the function validation of the OpenShift GPU
Operator running on eight GPUs within DGX™ A100. We described the different MIG modes we
tested, as well as the values of the node labels and Kubernetes resources exposed with these
different settings. We also conducted a performance benchmark, involving the eight GPUs
running simultaneously, either all training a single Al/ML model or all performing independent
computations.

As a follow-up to this work, we're planning on doing more work around Al/ML computing at large
scale, such as multi-GPU multi-node training, with multiple DGX A100 interconnected with
NVIDIA GPUDirect RDMA high-performance networks. To generate enough compute
requirements, we'll turn toward the greedy natural language models, such as BERT or
Transformer-XL. Stay tuned!
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